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Genomic architecture of human neuroanatomical diversity
R Toro1,2,3, J-B Poline4,5, G Huguet1,2,3, E Loth6,7, V Frouin4, T Banaschewski8, GJ Barker6, A Bokde9, C Büchel10, FM Carvalho6,7,
P Conrod6,11, M Fauth-Bühler12, H Flor13, J Gallinat14, H Garavan9,15, P Gowland15, A Heinz14, B Ittermann16, C Lawrence17,
H Lemaître18,19, K Mann12, F Nees13, T Paus17,20,21, Z Pausova22, M Rietschel23, T Robbins24, MN Smolka25,26, A Ströhle14,
G Schumann6,7,27, T Bourgeron1,2,3,27,28 and the IMAGEN consortium (www.imagen-europe.com)

Human brain anatomy is strikingly diverse and highly inheritable: genetic factors may explain up to 80% of its variability. Prior
studies have tried to detect genetic variants with a large effect on neuroanatomical diversity, but those currently identified account
for o5% of the variance. Here, based on our analyses of neuroimaging and whole-genome genotyping data from 1765 subjects,
we show that up to 54% of this heritability is captured by large numbers of single-nucleotide polymorphisms of small-effect spread
throughout the genome, especially within genes and close regulatory regions. The genetic bases of neuroanatomical diversity
appear to be relatively independent of those of body size (height), but shared with those of verbal intelligence scores. The study of
this genomic architecture should help us better understand brain evolution and disease.
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INTRODUCTION
Family studies show that a large part of the variability of different
human brain structures is determined by genetic factors. Because
we know a priori the degree of genetic relationship between
monozygotic and dizygotic twins, or between members of a
family, we can decompose the variability of a phenotype into
genetic and environmental components. Various studies have
demonstrated in this way that neuroanatomical phenotypes, such
as brain volume (BV), cortical surface or white matter micro-
structure, are highly inheritable, with genetic factors accounting
for up to 80% of their variability.1–4 These results are particularly
important for psychiatric research. Different psychiatric disorders
have been associated with characteristic changes in brain
anatomy, such as a higher incidence of macrocephaly and incre-
ased white matter volume in autism,5 or reduced hippocampal
and total BVs in schizophrenia.6 If these characteristic changes are
modulated by the subject's genetic background, then this
background may act as a protective factor or as a risk factor for
the development of psychiatric conditions. Various efforts have
been made to go deeper into the genetics of neuroanatomical

diversity through candidate-gene approaches or through agnostic,
genome-wide association studies (GWAS).2,7,8 These approaches
have provided important insights on the genetic bases of neuro-
anatomical diversity; however, for the moment, they account for
only a small proportion of the variance.
Here, we used a recently developed method called genome-

wide complex trait analysis (GCTA),9,10 where the combined effect
of hundreds of thousands single-nucleotide polymorphisms
(SNPs) is considered as a whole—instead of the massive univariate
testing approach of classic GWAS. We studied a large cohort of
1765 adolescents from the IMAGEN project,11 for whom neuro-
imaging, whole-genome genotyping and behavioural data was
collected. As in twin and family studies, we estimated the amount
of phenotypic variance explained by genetic relationships among
subjects. In contrast, instead of using expected relationships based
on pedigree, we used a genome-wide average of the difference in
genotyping at each SNP between unrelated subjects. Using
different sets of SNPs to compute genetic relationships, we were
able to partition neuroanatomical variance into different SNP sets
and investigate the genomic architecture of neuroanatomical
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diversity at a level of granularity intermediate between that of
twin studies and candidate-gene or GWAS. Finally, we simulated
phenotypes with different heritabilities and produced by different
numbers of causal SNPs to estimate the minimum number of
causal SNPs likely to produce our observed results.

MATERIALS AND METHODS
Neuroimaging
Brain scans were obtained from a cohort of 2089 adolescents (14.5 ± 0.4
years old, 51% females) from the IMAGEN project (http://imagen-europe.
com) using a standardised 3 T, T1-weighted gradient echo protocol in
eight European centres.11 Scans were first linearly transformed to match
the MNI152 atlas using FLIRT from FSL.12,13 The inverse of the determinant
of the transformation matrix was used to estimate the intracranial volume
(ICV).14 Next, the skull was stripped using 3dSkullStrip from AFNI,15 and the
grey matter, white matter and cerebrospinal fluid were automatically
segmented using FAST.16 The skull-stripped versions of the datasets, and
the tissue segmentations were visually inspected and manually corrected
wherever necessary. Total brain volume (BV) was estimated as the sum of
total grey and white matter volumes. Finally, subcortical structures were
automatically segmented using FIRST,17 and their accuracy visually
controlled using in-house software. All volumes were log10 converted.
Their distribution is illustrated in Supplementary Figure S1. Despite the
differences in average volume (from ~1 cm3 for the amygdala, to
~ 1300 cm3 for total BV, Supplementary Figure S1), all structures showed
a similar variability – there was a ~ 1.8-fold change from the smallest to the
largest volume in the cohort. The correlation matrix for all phenotypes
analysed is shown in Supplementary Table S1.

Genotyping
We used the autosomal SNPs common to the Illumina 610-Quad and
Illumina 660W-Quad chips, and strict filtering to conserve high-quality
SNPs only (minor-allele frequency 45%, genotyping rate 499%, signi-
ficance threshold for Hardy–Weinberg equilibrium test 410− 6, subjects
missing genotyping o10%, using PLINK 18). We further excluded SNPs in
strong linkage disequilibrium (R240.9) within a window of 50 SNPs to
prevent colinearity in our analyses. The final genotyping data consisted of
269 308 SNPs.

Statistical analyses
We used GCTA to estimate the amount of phenotypic variance captured by
genome-wide SNPs. Descriptions of the method can be found in Yang et al.,9

Yang et al.,10 and Lee et al.19 First, we used all SNPs to compute a single
genetic relationship matrix (GRM) and we estimated the amount of
phenotypic variance captured by this matrix using a mixed-effects linear
model. The multiple comparisons were corrected using a global test on the
P-values of all our phenotypes (Supplementary Methods S1). We used
phenotype simulation in GCTA to assess the statistical power of our analyses
as well as the minimum number of causal SNPs likely to produce our results
(Supplementary Methods S2). The genetic correlation among phenotypes
was estimated using the bivariate analysis platform in GCTA. Finally, we
partitioned phenotypic variance among different sets of non-overlapping
SNPs, and tested a posteriori whether any of these partitions captured more
variance than what could be expected given its number of SNPs
(Supplementary Methods S3). A first partition divided SNPs into genic and
non-genic SNPs, based on gene boundaries from the UCSC Genome Browser
hg18 assembly. Additional partitions divided SNPs based on their
involvement in central nervous system function (Supplementary Methods
S4) and minor-allele frequency (Supplementary Methods S5). We also used
random partitions of the genome into non-overlapping sets of 20%, 30%
and 50% of the SNPs to analyse the correlation between the number of SNPs
in a set and the amount of variance captured (Supplementary Methods S6).
Many confounding factors could affect our variance estimates and we

used several strategies to control for them. (1) For all our analyses, we
included age, sex and scanning centre as covariates. We also analysed the
effect of including Pubertal Development Scale20 scores. Pubertal
Development Scale scores did not affect the results and this covariate
was no longer included in the model. (2) We excluded subjects with a
genetic relationship 40.025 (that is, more related than 3rd or 4th cousins)
to prevent an effect of cryptic relatedness (in which case phenotypic
similarity could be partly due to shared environment effects or familial

causal variants not captured by SNPs). (3) We used Admixture21 to estimate
individual ancestry relative to the reference populations in HapMap 3.22

The result (Supplementary Figure S2) showed that individuals in our cohort
had a strong European-ancestry component. (4) We included the first 10
principal components of the identity-by-state matrix to account for
population structure effects.23 We observed, however, that not including
them affected only marginally our variance estimates (0.6% difference,
P= 0.93, two-tailed t-test, Supplementary Table S2). (5) We observed that
genic SNPs captured more variance than nongenic SNPs (see Results). If
our estimates were driven by population structure effects, we could expect
an excess of Ancestry Informative Markers (AIMs) within the genic SNP set.
We obtained a list of 1442 AIMs from Tian and collaborators,24 604 of
which were contained among our SNPs. There was no statistically
significant difference in the number of AIMs between our genic and
nongenic SNP sets (375 genic AIM versus 229 nongenic AIMs, Fisher's exact
test P=0.1723), and if anything, there was a tendency for AIMs to be
underrepresented within the genic SNP set (Fisher's exact test P= 0.089).

RESULTS
We measured ICV, total BV, as well as the volume of the
hippocampus (Hip), thalamus (Th), caudate nucleus (Ca), putamen
(Pu), globus pallidus (Pa), amygdala (Amy) and nucleus accumbens
(Acc) using validated automatic segmentation programs (Figure 1a).
Individuals were whole-genome genotyped, and after various
quality control filters, we conserved 269 308 informative, relatively
independent (R2o0.9) SNPs in a cohort of 1765 unrelated subjects.
First, we estimated the proportion of the phenotypic variance

explained by all SNPs with a linear mixed-effects model with the
GRM as the structure of the covariance between subjects using
GCTA. We estimated through simulation that we had 450%
statistical power to find proportions of phenotypic variance
attributable to SNPs (VG/VP) values 445%, and 470% statistical
power to find VG/VP values 455% (Supplementary Figure S3).
Using the GCTA Power Calculator,25 we estimated to have 485%
power to detect VG/VP455%, and 470% power to detect VG/
VP445%. In all our analyses, we included age, sex and scanning
centre as fixed effects. To account for population structure effects,
we also included the first 10 principal components of the identity-
by-state matrix as covariates. Figure 1b shows the estimated VG/VP
for the neuroanatomical structures we studied (Supplementary
Table S2). The figure includes also estimates of VG/VP for height, as
well as measurements of verbal intellectual quotient (VIQ) and
performance intellectual quotient (PIQ) based on the Wechsler
Intelligence Scale for Children. Our estimates for height (VG/
VP = 56%, s.e. = 23%, P= 0.0069), VIQ (VG/VP = 56%, s.e. = 25%,
P= 0.013) and PIQ (VG/VP = 52%, s.e. = 25%, P= 0.02) were statis-
tically significant, and consistent with those obtained previously in
larger populations.9,26 Because of the smaller size of our
population compared with the previous literature, however, the
s.e. of our estimations were larger: ~ 23%. A total of 12 statistical
tests were performed. To correct for the multiple comparisons, we
used a global test on the P-values that evaluated the excess of
significant tests (because of the correlation among phenotypes a
simple Bonferroni correction would be too conservative). There
was a statistically significant (P= 0.0011) excess of P-values o0.05
(see Supplementary Methods S1).
We found that a large proportion of the variance in our

neuroanatomical phenotypes was explained by the additive effect
of genotyped SNPs. For example, 44% (s.e. = 23%, P= 0.031) of the
variance in total BV, 53% (s.e. = 23%, P= 0.01) of the variance in
hippocampal volume (Hip) and 54% (s.e. = 23%, P= 0.011) of the
variance in ICV. In comparison, the combination of the two largest
GWAS to date for BV,2 Hip2,7 and ICV2,8 (N~ 20 000) revealed one
SNP associated with hippocampal volume and another associated
with ICV, each explaining o0.5% of the variance (this small-effect
size is of the same order of magnitude as for genome-wide
significant SNPs in other quantitative traits, such as height).
Approximately, 50% of the additive genetic factors affecting
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neuroanatomical variability may be then supported by a large
number of SNPs, each of small effect.
To get an idea of the minimum number of SNPs likely to

produce our results, we used GCTA to simulate 10 000 phenotypes
with additive heritability of 50% produced by 1 to 1000 causal
SNPs and 10 000 phenotypes produced by 1 to 10 000 causal
SNPs. Causal SNPs were randomly selected from among the
original 518k genotyped SNPs before R2 filtering, that is, their
effect may be noticeable only through linkage disequilibrium with
the ~ 270k SNPs used to compute the GRM. Their effect sizes were
drawn from a normal distribution to obtain 50% heritability. First,
we conducted GWAS of all our phenotypes, and recorded the
order of magnitude of the smallest P-value in each GWAS, which
varied from 10− 5.1 to 10− 6.8 (Table 1) . Next, we did the same for

each of the 20 000 simulated phenotypes. Figure 2 shows the
proportion of simulations with smallest P-value of the order of
10− 5, 10− 6 and so on, as a function of the number of causal SNPs
used. GWAS of phenotypes produced by very few causal SNPs
were more likely to have very small P-values. For example, almost
all phenotypes produced by o100 causal SNPs had a P-value
o10− 10. When the phenotypes were produced by o220 causal
SNP, there was at least one P-value o10− 8 in 95% of the cases. In
the case of ICV, the smallest P-value observed in the GWAS was
10− 5.95. In the simulations, 95% of the GWAS of phenotypes
produced by o850 causal SNPs had P-values smaller than 10− 5.95.
Similarly, the smallest P-value in the GWAS of BV was 10− 6.8, and
we observed that 95% of the GWAS of phenotypes produced by
o420 causal SNPs had P-values o10− 6.8. On the other hand, in

Figure 1. (a) Brain phenotypes. We measured intracranial volume (not represented), total brain volume (BV, in light grey) and several
subcortical structures, Acc, nucleus accumbens; Amy, amygdala; Ca, caudate nucleus; Hip, hippocampus; Pa, pallidum; Pu, putamen and Th,
thalamus. (b) Variance captured by SNPs. Percentage of phenotypic variance (VP) due to interindividual genetic relationships (VG), computed
from all genotyped single-nucleotide polymorphisms (SNPs). In addition to brain phenotypes, the bar plot includes estimates of VG/VP for
height, VIQ and PIQ. (c) Effect of covarying body size (height) from brain phenotypes. The proportion of VG/VP after covarying height (red bars)
did not change substantially compared with those in b (green bars), and maintained their statistical significance. (d) Effect of covarying VIQ
from brain phenotypes. The proportion of VG/VP after covarying verbal intellectual quotient (VIQ; red bars) decreased especially for intracranial
volume (ICV) and BV, where the estimates were no longer statistically significant (green bars: raw estimates from b). (e) Enrichment of variance
captured by genic SNPs. Genic SNPs (gene boundaries ± 50 kbp) represent 64% of all SNPs. If all SNPs explained a similar amount of variance,
genic SNPs should explain 64% of the total variance explained by SNPs (dashed line, green bars). They explained significantly more variance
than expected for ICV, BV, Th and Pa; significantly less for Amy (red bars, error bars represent test variance). *Po0.05, **Po0.01, uncorrected.
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most of the simulations produced by 42000 causal SNPs, the
smallest P-value was of the order of 10− 5 or 10− 6, like in our data.
This suggests that if the distribution of effect sizes of causal SNPs

for ICV and BV were similar to that used in our simulations, these
phenotypes should likely be produced by at least hundreds of
causal SNPs and possibly thousands of them.
The variance estimates for different brain structures were

heterogeneous, and appeared to be differently related to height,
VIQ and PIQ (Supplementary Table S2). For example, although the
variance explained by SNPs was high and statistically significant
for the Hip (VG/VP = 53%, s.e. = 23%, P= 0.01), this was not the case
for the caudate nucleus (VG/VP = 16%, s.e. = 23%, P= 0.25)—a
structure of comparable volume, geometry and variability that
presents a similar correlation with ICV (rHip/ICV = 0.51, rCa/ICV = 0.52)
and body size (rHip/Height = 0.15, rCa/Height = 0.21). This shows that
the estimates of VG/VP were not merely determined by the
structure’s volume or shape, and could reflect a varying influence
of additive genetic and environmental factors. Our variance
estimates were not significantly affected by population structure
—not including the 10 first principal components of the identity-
by-state matrix changed on average the estimates of variance by
less than 1% (P= 0.93). The estimates of variance did not change
significantly either if height or PIQ were covaried (Figure 1c;
Supplementary Table S2). In contrast, including VIQ scores as a
covariate decreased substantially VG/VP estimates for ICV and BV,
but not for subcortical structures (Figure 1d). For example, ICV has
a moderate correlation with height and VIQ (in our cohort
rICV/Height = 0.39 and rICV/VIQ = 0.18). The estimate of VG/VP for ICV
was not significantly different if height was added as a covariate;
however, it decreased from 54 to 32% (no longer statistically
significant) if VIQ was included as a covariate. We used the

Table 1. Order of magnitude of the smallest P-value in the GWAS for
each phenotype

Phenotype � log10(smallest
P-value)

ICV 5.95
BV 6.75
Hip 5.50
Th 5.72
Ca 5.91
Pu 5.49
Pa 5.67
Amy 5.14
Acc 5.60
Height 5.94
VIQ 5.32
PIQ 5.49

Abbreviations: Acc, nucleus accumbens; Amy, amygdala; BV, brain volume;
Ca, caudate nucleus; GWAS, genome-wide association studies; Hip,
hippocampus; ICV, intracranial volume; Pa, globus pallidus; PIQ, perfor-
mance intellectual quotient; Pu, putamen; Th, thalamus; VIQ, verbal
intellectual quotient.

Figure 2. Distribution of smallest P-value in the genome-wide association studies (GWAS) with simulated phenotypes as a function of the
number of causal single-nucleotide polymorphisms (SNPs) used to generate them. Simulated phenotypes were produced with a number of
causal SNPs varying from 1 to 1000 (a) and from 1 to 10 000 (b). The effect of causal SNPs were drawn from a normal distribution, and the
heritability of the simulated phenotypes was fixed at 50%. Ninety five percent of simulated phenotypes with o220 causal SNPs had a smallest
P-value o10− 8. In contrast, simulated phenotypes produced with4500 causal SNPs had most often a smallest P-value of the order of 10− 6 or
10− 5. The top plot in a and b shows the most frequent order of magnitude of the smallest P-value as a function of the number of causal SNPs.
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bivariate analysis platform in GCTA to estimate the genetic
correlation between our phenotypes, that is, the amount of
genetic variance shared by each pair of phenotypes
(Supplementary Table S3). In particular, these analyses showed
indeed a strong genetic correlation between VIQ and ICV
(rG = 0.95, P= 0.0047), and between VIQ and BV (rG = 0.89,
P= 0.014), but a small, not statistically significant, genetic
correlation between height and ICV (rG = 0.20, P= 0.25), and
between height and BV (rG = 0.23, P= 0.24). Genetic correlation
was also weak between PIQ and ICV (rG = 0.02, P= 0.48) and
between PIQ and BV (rG = 0.02, P= 0.48). More than 90% of BV is
constituted by the cerebral cortex and its cortico-cortical
connections. Our results suggest that the genetic bases of ICV
and BV diversity may be shared to a larger extent with those of
VIQ than with those of PIQ or body size (height).
A large proportion of the genetic variance captured by SNPs

could be due to those located within genes and close regulatory
regions. We obtained 20 022 gene boundaries from the UCSC
Genome Browser hg18 assembly. We made a first set with all SNPs
within these boundaries, and two further sets that included also
SNPs 20 kbp and 50 kbp upstream and downstream from the 5′
and 3′ untranslated regions of each gene. Next, we computed
GRMs for those three SNP sets (±0, ± 20 and ± 50 kbp genic sets)
and their complements. Finally, for each of the three sets, we
fitted the same linear mixed-effects model as before (including
age, sex, centre and 10 principal components), but using two
genetic relationship matrices instead of 1: the genic matrix and its
complementary nongenic matrix. Genic SNP sets explained up to
98% of the variance captured by all SNPs (Supplementary Table
S4), which was in many cases significantly larger than what could
be expected from set length alone (Figure1e; Supplementary
Table S5). For ICV, where 54% of the variance can be explained by
all genotyped SNPs (N= 269 308), using only SNPs within gene
boundaries (N= 108 339) explained 26% of the phenotypic
variance (s.e. = 16%, P= 0.054), and this proportion increased to
45% (s.e. = 18%, P= 0.0065) when the boundaries were expanded
to ± 20 kbp (N= 146 431), and to 49% (s.e. = 19%, P= 0.0058) when
the boundaries were expanded to ± 50 kbp (N= 174 334). The
genic ± 50 kbp set contained 65% of all genotyped SNPs, but
explained 91% of the variance of ICV attributable to SNPs,
significantly more than what we would expect from its length
alone (P= 0.014).
Previous reports have suggested that causal SNPs for height

and IQ are relatively homogeneously distributed across the
genome, and then, that increasing the number of SNPs used to
create a genetic-relationship matrix increases proportionally the
amount of phenotypic variance captured.9 We observed a similar
trend in our neuroanatomical phenotypes. We partitioned the
genome into non-overlapping sets with different numbers of
SNPs, and observed a strong correlation between set length and
VG/VP (r= 0.62 on average). The correlation was the same when
only genic SNPs were selected (r= 0.62), but smaller, and in most
cases not statistically significant when only nongenic SNPs were
selected (Supplementary Figure S4).
Finally, we partitioned VG/VP based on functional annotation

(SNPs within genes involved in central nervous system
function27,28), and relative minor-allele frequency. We did not
observe statistically significant differences in the amount of
variance explained by these different SNP sets compared with
the expectations based on their length (Supplementary Methods
S3; Supplementary Tables S6 and S7).

DISCUSSION
Our analyses indicate that a significant proportion of the
heritability of neuroanatomical phenotypes may result from the
additive effect of hundreds of small-effect SNPs spread genome-
wide. Such SNPs seemed to be largely independent from those

related to body size (height) or reflecting population structure in
our cohort. They were shared to a greater extent, however, with
those associated with VIQ in the case of ICV and BV. An especially
important role in determining neuroanatomical diversity appeared
to be played by SNPs within genes and close regulatory regions.
Even if many of our variance estimates are large and statistically

significant, they are still far from the estimates of heritability in
twin studies. Recent twin studies have found that several of the
structures we analysed here had heritabilities 480%29–31 (Supple-
mentary Table S8). This difference may be due in part to a weak
linkage disequilibrium between our genotyped SNPs and the real
causative variants, to rare alleles with larger effect sizes or to
common alleles with even smaller effect sizes.32,33 Besides, GCTA
only captures additive genetic effects, and it has been suggested
that part of the difference between heritability estimates in twin
studies and GCTA estimates may be due to non-additive genetic
factors.34 It is also possible that the differences may be related to
those between the IMAGEN cohort and the cohorts analysed by
other studies. For example, the caudate nucleus had the smallest
VG/VP in our analyses (16%, not significant) but was reported as
strongly inheritable by Den Braber et al.31 and Kremen et al29 who
studied cohorts of adults (~30 year old and ~ 55 years old on
average, respectively). However, it was reported as having a
weaker, not statistically significant heritability by Yoon et al.,30 in a
population of 8-year-old children. The lower VG/VP of the caudate
nucleus in IMAGEN may then reflect an age effect. Furthermore,
because of our statistical power, there is a chance of about
15–30% that we may have failed to detect significant VG/VP values
in our cohort that could have been detected in a larger cohort.
Nevertheless, the additive effect of genome-wide SNPs appears as
a major determinant of neuroanatomical diversity. Further studies
with larger cohorts should be conducted to increase the precision
and reliability of our estimations, which should also allow us to
detect more subtle differences. For example, we may be able to
detect effects related to functional partitions. Finally, our results
indicate that cohorts of maybe hundreds of thousands of
individuals will be required to make progress in the detection of
genes regulating neuroanatomical diversity, which underlines the
necessity for international efforts such as the ENIGMA and
CHARGE consortia.
Recent studies have highlighted the importance of the additive

effect of SNPs in determining anatomical and cognitive diversity in
humans, but also their role in psychiatric disorders. In addition to
the clear role of rare mutations in the susceptibility to psychiatric
disorders,32,35 genome-wide complex trait analyses have shown
that commonly genotyped SNPs capture 23% of the risk to
schizophrenia,28,36 24% of the risk to Alzheimer’s disease37 and
from 17 to 60% of the risk to autism spectrum disorders.36,38 Due
to the small individual effect of these SNPs, GWAS will require very
large cohorts to explain any sizeable proportion of the trait’s
genetic variance.39 Various structural and functional neuroimaging
endophenotypes, on the other hand, have been frequently
associated with psychiatric disorders,40 and using GCTA could
inform us about the additive effect of SNPs at a relevant
intermediate level, closer to biological processes than cognitive
or psychiatric tests. A global view of the genomic architecture of
neuroimaging endophenotypes should not only allow us to better
understand the biological bases of the susceptibility to psychiatric
disorders— helping us, for example, to target future GWAS to
more specific chromosomal regions and brain structures—but
also to improve our understanding of the biological bases of brain
diversity and evolution in humans.
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